

Introduction to Statistics

SGK GOVT DEGREE COLLEGE, VINUKONDA CH. VIJAYA KALPANA LECTURER IN COMMERCE

Descriptive vs. Inferential **Statistics**

Descriptive Statistics

Describes the main features of a dataset, such as mean, median, mode, and standard deviation.

Inferential Statistics 2

Uses sample data to make inferences about a larger population. This includes tests of significance and confidence intervals.

Use Case 3

To compare the average salaries of two different departments, we would use descriptive statistics. However, if we wanted to know whether gender affects salary, we would use inferential statistics.

Data Types and Measurement Scales

Data Types

- Nominal
- Ordinal •
- Interval •
- Ratio •

Measurement Scales

- Nominal •
- Ordinal •
- Interval
- Ratio

Use Case

When analyzing customer feedback, we may use nominal data to categorize positive and negative comments, and ordinal data to rank the severity of each comment.

Sampling Techniques

1

2

3

Each member of the population has the same chance of being selected as a part of the sample.

Stratified Sampling

The population is divided into strata based on particular characteristics, and samples are taken from each stratum.

Cluster Sampling

The population is divided into clusters based on geographic or other criteria, and samples are taken from each cluster.

Central Tendency and Dispersion

Mean

The average of all numbers in a dataset; calculated by adding all values and dividing by the number of values.

1, 2, 3, **4**, **5**, 6, 8, 9 Median = $(4 + 5) \div 2$ = 4.5

Median = 6

1, 3, 3, **6**, 7, 8, 9

Median

The middle value in a dataset; the value that separates the lower 50% of values from the upper 50%.

Standard Deviation

A measure of the spread of values in a dataset: calculated by taking the square root of the variance.

Probability Concepts

Independent Events

Two events are independent if the outcome of one event does not affect the outcome of the other.

Bayes' Theorem

A formula for updating the probability of a hypothesis based on new evidence.

Conditional Probability

The probability of one event given that another event has occurred.

Use Case

To predict whether a customer will churn, we can use conditional probability to calculate the likelihood of that event given certain characteristics of the customer.

Hypothesis Testing

determine whether there is a

statistically significant difference.